

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.
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Contributor Covenant Code of Conduct


Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience,
education, socio-economic status, nationality, personal appearance, race,
religion, or sexual identity and orientation.




Our Standards

Examples of behavior that contributes to creating a positive environment
include:


	Using welcoming and inclusive language


	Being respectful of differing viewpoints and experiences


	Gracefully accepting constructive criticism


	Focusing on what is best for the community


	Showing empathy towards other community members




Examples of unacceptable behavior by participants include:


	The use of sexualized language or imagery and unwelcome sexual attention or
advances


	Trolling, insulting/derogatory comments, and personal or political attacks


	Public or private harassment


	Publishing others’ private information, such as a physical or electronic
address, without explicit permission


	Other conduct which could reasonably be considered inappropriate in a
professional setting







Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.




Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.




Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at [INSERT EMAIL ADDRESS]. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.




Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html







          

      

      

    

  

    
      
          
            
  Developer Certificate of Origin
Version 1.1

Copyright (C) 2004, 2006 The Linux Foundation and its contributors.
660 York Street, Suite 102,
San Francisco, CA 94110 USA

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Developer’s Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.



          

      

      

    

  

    
      
          
            
  
Frequently Asked Questions (FAQ)

As questions regarding the research and methodology come, they will be answered in this document.


	Q: I want to train a Neural Network. Can I use FAI for that?


	A: Although we are not addressing any kind of learning process in this repository, we believe that FAI
could be use to boost the performance of RL Agents. There are suggestions on how to use FMC and
Swarm Wave to improve RL agents in the Introduction to FAI [https://github.com/FragileTheory/FractalAI/blob/master/introduction_to_fai.md#4-combining-fai-and-rl] document.








          

      

      

    

  

    
      
          
            
  
Fractal AI: A Fragile Theory of Intelligence

[image: _images/deprecated.svg]deprecated [http://github.com/badges/stability-badges]

This repository is deprecated. If you would like to use any of the algorithms for your own research please refer to the fragile framework [https://github.com/guillemdb/fragile].

It is only for educational purposes, and for providing code to the Fractal AI [https://arxiv.org/abs/1803.05049] paper.
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[image: Centipede-v0 1960 samples per action]Centipede-v0
[image: MontezumaRevenge-v0 5175 samples per action]MontezumaRevenge-v0


Once you start doubting, just like you’re supposed to doubt, you ask me if the science is true.
You say no, we don’t know what’s true, we’re trying to find out and everything is possibly wrong.




–Richard P. Feynman, The Pleasure of Finding Things Out: The Best Short Works of Richard P. Feynman.
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Abstract

Fractal AI (arXiv#1 [https://arxiv.org/abs/1803.05049], arXiv#2 [https://arxiv.org/abs/1807.01081]) is a theory for efficiently sampling state spaces. It allows one to derive new mathematical tools that could be useful for modeling information
using cellular automaton-like structures instead of smooth functions.

In this repository we present Fractal Monte Carlo (FMC), a new planning algorithm derived from the first principles of Fractal AI [https://arxiv.org/abs/1803.05049] theory. A FMC agent is capable of solving Atari-2600 games
under the OpenAI Gym [https://github.com/openai/gym] several orders of magnitude more efficiently
than similar planning algorithms, such as Monte Carlo Tree Search (MCTS) [1].

We also present a more advanced Swarm Wave implementation, also derived from Fractal AI principles,
that allows one to solve Markov decision processes under a perfect/informative model of the environment. This implementation is far more efficient than FMC, effectively “solving” a substantial number of Atari games.

The code provided under this repository exemplifies how it is now possible to beat
some of the current state-of-the-art benchmarks on Atari games while generating a large set of top-performing examples
with little computation required, turning Reinforcement Learning (RL) into a supervised problem.

These new algorithms propose a new approach to modeling the decision space, while maintaining
control over any aspects of the agent’s behavior. The algorithms can be applied
to all combinations of discrete or continuous decision and state spaces.




Quick Start

To quickly understand the fundamentals of Fractal AI you can refer to the Introduction to FAI.
The document provides a brief explanation of the algorithms here presented and their
potential applications on the field of Reinforcement Learning.

To test how the Fractal Monte Carlo Agent performs on any Atari game you can refer to the FMC example notebook. This example allows us to run games using either the RAM content or the pixel render as observations.

To better understand how the Swarm Wave algorithm works in practice you can refer to the Swarm Wave example notebook.

Pleas note the authors are open to discuss the ideas and code here presented under the
conceptual framework of Reinforcement Learning and its standard terminology.




Installation

The code provided aims to be both simple and self-explanatory.
Requirements and instructions to set up the environment are provided below.


Requirements


	Python 3. Python 2 is not supported nor currently expected to be supported.


	Python numpy library [http://docs.scipy.org/doc/numpy/reference/?v=20180402183410].


	Python OpenAI Gym [Atari] [https://github.com/openai/gym] [2].


	OpenAI Gym dependencies.






	(Optional) Jupyter Notebook [http://www.jupyter.org] for running the example notebooks provided.







Installing dependencies

As a first step, install the dependencies as explained on the OpenAI gym documentation:


To install the full set of environments, you’ll need to have some system
packages installed. We’ll build out the list here over time; please let us know
what you end up installing on your platform.
In case you want to run the notebook:

pip3 install jupyter

On OSX:

brew install cmake boost boost-python sdl2 swig wget

On Ubuntu 14.04:

sudo apt-get install -y python-numpy python-dev cmake zlib1g-dev libjpeg-dev xvfb libav-tools xorg-dev python-opengl libboost-all-dev libsdl2-dev swig libav-tools







Cloning and Installing the FractalAI Repository

On the terminal, run:

git clone git@github.com:FragileTheory/FractalAI.git
cd FractalAI
sudo pip3 install -e .










Benchmarks


It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are.

If it doesn’t agree with experiment, it’s wrong.




–Richard P. Feynman

We used a standard set of 50 Atari-2600 games, common to all the planning algorithms articles
found in the literature, to compare our implementation of the FMC algorithm against:


	Standard Human: a professional game tester after 2 hours of trainnig, as reported in [5].


	World Human Record: the maximum score achieved by a human player, as reported in [8].


	Planning SOtA: the best score achieved by any “State of the Art” planning algorithms (Full Tree, MCTS UCT, IW(1), p-IW(1), R.p-IW(1), 2BSF, BrFS), as reported in [12] [13] [14] [15] [16] [17].


	Hidden score limit: many games do not support scoring above 1M and reset score down to zero after 999,999 is reached. In most cases the limit was totally unknow as no one -human or algorithm- had ever been able to reach this limit before.




|                              | FMC Wins |   %  |
| :————————— | :——: | :–: |
| FMC vs Standard Human        |  49 / 50 |  98% |
| FMC vs World Human Record    |  32 / 50 |  64% |
| FMC vs Planning SOtA (1)     |  50 / 50 | 100% |
| FMC vs Hidden score limit    |  16 / 50 |  32% |

(1) On average, the Swarm Wave version of FMC used 360 times fewer samples per action than the rest of planning algorithm,
typically using 150k samples per action.


Fractal Monte Carlo Agent Performance Table

The following table depicts the Fractal Monte Carlo Agent performance on each tested game.

| Game | Human Record | Planning SOtA | FMC |
|:— | :—: | :—: | :—:|
| Alien | 251916 | 38951 | 479940 |
| Amidar | 155339 | 3122  | 5779 |
| Assault | 8647 | 1970  | 14472 |
| Asterix () | 335500 | 319667 | 999500 |
| Asteroids | 10004100 | 68345  | 12575000 |
| Atlantis | 7352737 | 198510  | 10000100 |
| Bank Heist | 199978 | 1171  | 3139 |
| Battle Zone () | 863000 | 330880  | 999000 |
| Bean Rider () | 999999 | 12243  | 999999 |
| Berzerk | 1057940 | 2096 | 17610 |
| Bowling | 300 | 69  | 180 |
| Boxing | 100 | 100  | 100 |
| Breakout | 752 | 772 | 864 |
| Centipede | 1301709 | 193799 | 1351000 |
| Chopper Command () | 999900 | 34097  | 999900 |
| Crazy Climber | 447000 | 141840  | 2254100 |
| Demon Attack () | 999970 | 34405  | 999970 |
| Double Dunk | 24 | 24  | 24 |
| Enduro | 3617.9 | 788  | 5279 |
| Fishing Derby | 71 | 42  | 63 |
| Freeway | 34 | 32 | 33 |
| Frostbyte () | 552590 | 6427 | 999960 |
| Gopher () | 120000 | 26297  | 999980 |
| Gravitar | 1673950 | 6520  | 14050 |
| Hero | 1000000 | 15280  | 43255 |
| Ice Hockey | 36 | 62  | 64 |
| Jamesbond | 45550 | 23070  | 152950 |
| Kangaroo | 1436500 | 8760  | 10800 |
| Krull | 1006680 | 15788  | 426534 |
| Kung fu master | 1000000 | 86290  | 172600 |
| Montezuma’s Revenge | 1219200 | 500  | 5600 |
| Ms. Pacman () | 290090 | 30785  | 999990 |
| Name this Game | 25220 | 15410  | 53010 |
| Pong | 21 | 21  | 21 |
| Private Eye | 103100 | 2544  | 41760 |
| QBert () | 999975 | 44876  | 999975 |
| River Raid | 194940 | 15410  | 18510 |
| Road Runner () | 999900 | 120923  | 999900 |
| Robotank | 74 | 75  | 94 |
| Seaquest () | 527160 | 35009  | 999999 |
| Space Invaders | 621535 | 3974  | 17970 |
| Star Gunner () | 77400 | 14193  | 999800 |
| Tennis | 24 | 24  | 24 |
| Time Pilot | 66500 | 65213  | 90000 |
| Tutankham | 3493 | 226  | 342 |
| Up and Down () | 168830 | 120200  | 999999 |
| Venture | 31900 | 1200  | 1500 |
| Video Pinball () | 999999 | 471859  | 999999 |
| Wizard of Wor () | 99900 | 161640  | 99900 |
| Zaxxon | 100000 | 39687  | 92100 |

(*) Games with the “1 Million bug” where max. score is hard-limited.


Detailed Performance Sheet

We provide a more detailed Google Docs spreadsheet where the performance of the
Fractal Monte Carlo Agent is logged relative to the current alternatives.
In the spreadsheet we also provide the parameters used in each of the runs.

If you find any outdated benchmarks or for some reason you are unable to replicate
some of our results, please open an issue [https://github.com/FragileTheory/FractalAI/issues]
and we will update the document accordingly.


	Fractal AI performance sheet [https://docs.google.com/spreadsheets/d/1JcNw2L0YL_I2iGZPJ0bNKJshlTaqMuEl5CP2W5zie6M/edit?usp=sharing]











Additional Resources


Theoretical Foundations

Fractal AI: A Fragile Theory of Intelligence [https://docs.google.com/document/d/13SFT9m0ERaDY1flVybG16oWWZS41p7oPBi3904jNBQM/edit?usp=sharing]:
This document explains the fundamental principles of the Fractal AI theory in which our Agent is based.
We worked all the fundamental principles completely from scratch to build our own solution.
We try to be consistent with existing terminology, and this document should contain everything
you need to understand the theory. Comments on how to better explain the content are appreciated.

Solving Atari Games Using Fractals And Entropy [https://arxiv.org/abs/1807.01081]:
A short version of the article written by Spiros Baxevanakis [https://twitter.com/spirosbax] and submitted -under very high uncertaintly- to NIPS2018.




Blog

EntropicAI, Sergio Hernández Cerezo’s blog [http://entropicai.blogspot.com/]:
Here you can find the evolution of the research process for developing this algorithm,
documented and explained, as well as experiments which aim to apply the theory to other fields of research.




YouTube

Fractal AI playlist [https://www.youtube.com/playlist?list=PLEXwXLT-a6beFPzal3OznPQC0pieccAle]:
In the Youtube playlist you can find videos of the accomplishments over the years.
Besides the recordings Atari games using the Agent, you can find videos recorded using
a custom library that allows one to create different tasks in continuous control environments,
as well as visualizations of how the Agent samples the state space.




Related Research

GAS paper [https://arxiv.org/abs/1705.08691] [9]:
A manuscript describing an application of the Fractal AI theory on general optimization problems.
There are certainly better ways to apply the theory such problems, yet it illustrates why
code is better than maths to explain the theory. When trying to formalize it,
things can get really non-intuitive.

Causal Entropic Forces by Alexander Wissner-Gross [http://alexwg.org/publications/PhysRevLett_110-168702.pdf] [10]:
The fundamental concepts behind this paper inspired the present research.
We develop our theory aiming to calculate future entropy more quickly and being able to
leverage the information contained in the Entropy of any state space, together with any potential function.






Cite us

@misc{1803.05049,
    Author = {Sergio Hernández Cerezo and Guillem Duran Ballester},
    Title = {Fractal AI: A fragile theory of intelligence},
    Year = {2018},
    Eprint = {arXiv:1803.05049},
  }








FAQ

As questions regarding the research and methodology we will address them under the FAQ.

You can refer to the FAQ document.
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Introduction to Fractal AI theory

This is the fastest way to get an idea of what our work is about. Here you will find qualitative
explanations of the inner workings of our techniques, and possible applications to real world
problems.
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1. What is FAI?

Fractal AI [https://arxiv.org/pdf/1803.05049.pdf] is a theory derived from first principles that
allows to control swarms of walkers. It is a set of rules to move, compare, and extract information
from a swarm. Deriving mathematical tools from FAI to solve a specific problem is about defining
how you want the swarm to behave in a given state space, in a way that the information extracted
from it serves a purpose.

In the context of FAI, Fractal Monte Carlo is just one of the possible tools that can be derived to
solve specific problems. The Atari games, where we have perfect information, are just the simplest
case to test the algorithm, but it is not the general case.

Swarms with different behaviours could be used as an alternative to traditional
calculus techniques in many other problems. How to derive new tools from FAI that apply to real
world problems would become a research topic, but some of the tools already derived suggest that
FAI could compete efficiently with alternative techniques.

These short videos show some of our tools represented in a similar fashion that the
Deep-Neuroevolution [https://eng.uber.com/deep-neuroevolution/] blog post from Uber.
We show swarms serving different purposes such as:


	Forming a tree like structure that approximates a
long-term energy gradient [https://youtu.be/eLGTo0RfFi4?t=29s].


	Exploring the space to find shortest paths [https://youtu.be/AoiGseO7g1I?t=44s].


	Sampling chaotic state spaces Video 1 [https://youtu.be/HLbThk624jI?t=30s]
Video 2 [https://youtu.be/OFhBKZ0l6fw?t=1m19s].


	Behaving like a wave function [https://youtu.be/PdyfWIlLTCs?t=10s] that avoids boundary
conditions, that can also be used to draw a tree of trajectories.


	Exploring different scales of an energy landscape in a
global optimization [http://entropicai.blogspot.com.es/2016/02/serious-fractal-optimizing.html?m=0]
problem.


	Solving an stochastic integral to find a path [https://youtu.be/0t7jI9WdTWI] that discounts
expectations over 1000 time steps.







2. Swarm Wave




3. Fractal Monte Carlo

According to FAI, FMC is an algorithm to efficiently explore functions that contain information on
the input-output relation for a system, given a bound in computational resources.  It is meant to be
a robust path-search algorithm that efficiently approximates path integrals formulated as a Markov
decision process. FMC calculates each step of the path independently, but uses information extracted
from previous time steps to adjust its parameters.


3.1 Domain of Application

FMC applied to Atari is a toy example, however since we applied FMC in the context of Markov
decision processes, we do not actually need a perfect model.  The swarm that FMC uses is not meant to be
applied only when we have access to perfect models, but also in any mathematical function that
does not require to dynamically adjust the step size(dt) when being integrated.

In this case we showed that it works on the ALE interface, which can provide either a deterministic
or an stochastic environment, but it could be possible to alter the environment that the swarm uses
by adding noise, (to observations, actions, rewards, distance measure, or boundary conditions) and
FMC will still perform nicely. Unfortunately, when not assuming a perfect model we experience a
penalty in performance, although FMC is capable of successfully filtering out different kinds of
noise.




3.2 How it works

We provide links to the specific lines of the code where the described parts of the algorithm take
place. For example, (L45) [https://github.com/FragileTheory/FractalAI/blob/6b62d79559364c222025dbf3da669f0ac8a38c09/fractalai/fractalmc.py#L45]
will be a reference to the line 45 of the file fractalmc.py

When calculating an action, FMC will construct a tree that consists of potential trajectories that
describe the future evolution of the system. This tree, called causal cone, is expanded by a
swarm (L58, 105) [https://github.com/FragileTheory/FractalAI/blob/6b62d79559364c222025dbf3da669f0ac8a38c09/fractalai/fractalmc.py#L58-L105]
of walkers that populates its leaf nodes. The swarm will undergo an iterative process (L322) [https://github.com/FragileTheory/FractalAI/blob/6b62d79559364c222025dbf3da669f0ac8a38c09/fractalai/fractalmc.py#L322]
in order to make the tree grow efficiently. When a maximum amount of computation has been reached,
the utility of each action will be considered proportional to the number of walkers that populate
leaf nodes originating from the same action (120, 126) [https://github.com/FragileTheory/FractalAI/blob/6b62d79559364c222025dbf3da669f0ac8a38c09/fractalai/fractalmc.py#L120-L126].

The causal cone, unlike in MCTS, is not a static tree of all possible actions that will be explored.
Instead the causal cone is a tree data structure that changes at every time step by applying random
perturbations (L142) [https://github.com/FragileTheory/FractalAI/blob/6b62d79559364c222025dbf3da669f0ac8a38c09/fractalai/fractalmc.py#L142],
and letting the swarm move freely among different leaf nodes of the tree.
(L199) [https://github.com/FragileTheory/FractalAI/blob/6b62d79559364c222025dbf3da669f0ac8a38c09/fractalai/fractalmc.py#L199]

In order to evolve the swarm, we first initialize the walkers at the root state, perturb them, and store
the action chosen (L136) [https://github.com/FragileTheory/FractalAI/blob/6b62d79559364c222025dbf3da669f0ac8a38c09/fractalai/fractalmc.py#L136].
Then use the following algorithm to make it evolve until the maximum number of samples allowed is reached:


	Measure the euclidean distance between all the observations of all the walkers, and the observation of
another walker chosen at random (L164) [https://github.com/FragileTheory/FractalAI/blob/6b62d79559364c222025dbf3da669f0ac8a38c09/fractalai/fractalmc.py#L164].
This will create an stochastic measure of diversity, that when incorporated into the virtual
reward formula, will favor the diversity among the states in the swarm.


	Normalize the values so all the walkers’ distances fall into the [0, 1] range (L175) [https://github.com/FragileTheory/FractalAI/blob/6b62d79559364c222025dbf3da669f0ac8a38c09/fractalai/fractalmc.py#L175].
Normalize the rewards to be in range [1, 2]. (L184) [https://github.com/FragileTheory/FractalAI/blob/6b62d79559364c222025dbf3da669f0ac8a38c09/fractalai/fractalmc.py#L184].
This allows us to get rid of problems with the scale of both distances and rewards, and assures
that the value of the virtual distance will be bounded.


	Calculate the virtual reward for each walker. (L177) [https://github.com/FragileTheory/FractalAI/blob/6b62d79559364c222025dbf3da669f0ac8a38c09/fractalai/fractalmc.py#L177].
This value represents an stochastic measure of the importance of a given walker with respect
to the whole swarm. It combines both an exploration term (distance) with an exploitation
term (reward) that is weighted by the balance coefficient, which represents the current trade-off
between exploration and exploitation, and helps modeling risk (L304) [https://github.com/FragileTheory/FractalAI/blob/6b62d79559364c222025dbf3da669f0ac8a38c09/fractalai/fractalmc.py#L304].


	Each walker of the swarm compares itself to another walker chosen at random (L215) [https://github.com/FragileTheory/FractalAI/blob/6b62d79559364c222025dbf3da669f0ac8a38c09/fractalai/fractalmc.py#L215],
and gets assigned a probability of moving to the leaf node where the other walker is located (L219) [https://github.com/FragileTheory/FractalAI/blob/6b62d79559364c222025dbf3da669f0ac8a38c09/fractalai/fractalmc.py#L219].


	Determine if a walker is dead (L209-212) [https://github.com/FragileTheory/FractalAI/blob/6b62d79559364c222025dbf3da669f0ac8a38c09/fractalai/fractalmc.py#L209-L212].
Then decide if the walker will clone or not depending on its death condition and clone probability (L220-223) [https://github.com/FragileTheory/FractalAI/blob/6b62d79559364c222025dbf3da669f0ac8a38c09/fractalai/fractalmc.py#L220-L223].
The death condition is a flag set by the programmer that lets us incorporate arbitrary boundary
conditions to the behaviour of the agent. The death flag helps the swarm avoiding undesired
regions of the state space.


	Move the walkers that are cloning to theirs target leaf nodes (L224-228) [https://github.com/FragileTheory/FractalAI/blob/6b62d79559364c222025dbf3da669f0ac8a38c09/fractalai/fractalmc.py#L224-L228].
This allows for recycling the walkers that either fall out of the desired domain (dead) or have
been poorly valued with respect to the whole swarm. It also partially avoids exploring regions of
the state space that are either too crowded (low diversity) or have a very poor reward.


	Choose an action for each walker and step the environment (perturbation).
The swarm will evolve and explore new states. This is how you make the causal cone grow (L142) [https://github.com/FragileTheory/FractalAI/blob/6b62d79559364c222025dbf3da669f0ac8a38c09/fractalai/fractalmc.py#L142].
The fact that we are choosing between cloning and exploring allows for a non-uniform growth of the
causal cone’s time horizon. A walker can clone to a leaf node which has a different
depth than its current leaf node, meaning that jumps forward and backwards in time are allowed.


	GOTO 1 until the maximum number of samples is reached. By iterating each time, we are
redistributing the “useless” walkers to more promising leaf nodes, and perturbing the states located
in the regions considered to have the highest utility. After several iterations, the density
distribution of the walkers should match the reward density distribution of the state space.


	Approximate the utility for each action according to (120, 126) [https://github.com/FragileTheory/FractalAI/blob/6b62d79559364c222025dbf3da669f0ac8a38c09/fractalai/fractalmc.py#L120-L126].
Take the action with more utility. Note that we are just counting how many states in the swarm
took the same action in the root node.




After deciding an action, the swarm will update its parameters: the number of walkers, and the
number of times it will sample the state space to build the next causal cone. This update will be
adjusted by a non linear feedback loop, with the objective of keeping the mean depth of the cone
as close as possible to a desired time horizon (L262, 280, 290) [https://github.com/FragileTheory/FractalAI/blob/6b62d79559364c222025dbf3da669f0ac8a38c09/fractalai/fractalmc.py#L262-L290].




3.3 Parameters


Set by the programmer


	Fixed steps: It is the number of consecutive times that we will apply an action to the
environment when we perturb it choosing an action. Although this parameter actually depends on the
environment, we can use it to manually set the frequency at which the agent will play. Taking more
consecutive fixed steps per action allows for exploring further into the future at the cost of
longer reaction times.


	Time Horizon: This value represents how far we need to look into the future when taking an
action. A useful rule of thumb is Time Horiozon = Nt / Fixed steps, where Nt is the number
of frames that it takes the agent to loose one life (die) since the moment it performs the actions
that inevitably lead to its death. This parameters, multiplied by the fixed_steps, determines the
time horizon of the bigger potential well that the agent should be able to escape.


	Max states: This is the maximum number of walkers that can be part of the Swarm. This number
is related to “how thick” we want the resulting causal cone to be. The algorithm will try to use
the maximum number of walkers possible.


	Max samples: This is the maximum number of times that we can make a perturbation when using
a swarm to build a causal cone. It is a superior bound, the algorithm will try to use as few
samples as possible in order to meet the defined time horizon. It is a nice way to set how
fast you need to take an action in the worst case. A reasonable value is max walkers * time horizon * N,
being N=5 a number that works well in Atari games, but highly depends on the task.











4. Combining FAI and RL

The techniques presented in this repository do not tackle “learning” in any way. They are just
tools for generating data efficiently.

It is true that we do not know the true state of the “real world”, so FMC (as for any other MCTS
variation) cannot be applied directly in production models. However, we do not know of any
application of RL that trains an agent directly in the real world, without some pre-training using
a simplified computer model of the real environment. We are aware that the use of a training
environment is considered a “hack” to avoid breaking robots, but as long as it is needed, we
propose taking this hack one step further.

In the case of having access to a training environment, FMC could be used to overcome one of the
current bottlenecks of RL: efficiently generating high quality samples.

It could be possible to generate millions of games with record scores within an hour. Once trained,
the model would not longer need FMC to act on the real world. The data generated could be used in
some of the following ways:


	Training an embedding that learns to capture the internal dynamics of the environment. The
embedding could be used as input for a DQN instead of cropping the screen differently in each game,
or as a weight initialization to avoid dependence on initial conditions.


	Traditional reward discounting techniques or policy gradients could be applied on rollouts
generated by FMC, instead of rollouts generated by the same network that is being trained. We
hypothesize that this could help stabilize learning, and dealing with unbounded rewards.


	A network trained in a fully supervised manner on samples generated by FMC, and then used as a
baseline for a traditional RL agent, maybe could help in improving performance.


	Improving already existing applications where MCTS is used, such as AlphaZero, and AlphaChem. The
data presented suggests that using FMC instead of MCTS could result in a boost on performance.




The hacks proposed could work directly with dm_control, gym, and virtually with any function that
can be sampled.




5. Using FAI to train robots

FMC can also be applied to continuous control tasks. It is possible to run environments from
the dm_control library, although without proper reward shaping and defining boundary conditions,
each run takes hours. All the tasks but humanoid have been solved in minutes using custom
boundary conditions (and sometimes reward shaping).

Sergio built a custom training environment to test our methods in different continuous control
tasks. In those 2D toy examples that we used for testing and debugging purposes, we were able to
sample high quality trajectories [https://www.youtube.com/watch?v=tLsu0On61CI&list=PLEXwXLT-a6beFPzal3OznPQC0pieccAle&index=29]
in tasks which involved up to 36 degrees of freedom [https://www.youtube.com/watch?v=XD9Fumzf57Y].
Given that those trajectories were sampled with an early algorithm (also derived using FAI) that is
about two orders of magnitude less efficient than than FMC, we believe that the ideas proposed for
discrete mdps could also be applied to robots.




6. Black box optimization

Although the first tool we have published is FMC, we do not believe it is the most suitable
algorithm for training a policy that can be applied to real world problems. We think that FAI
really shines as a black box optimization technique, such as similar alternatives like Evolutionary
Strategies.

There are at least two ways of leveraging FAI as a black box technique for improving RL models:
As a meta parameter optimization tool, where we evolve the parameters of a population of RL models,
or as an alternative to Evolutionary Strategies [https://arxiv.org/pdf/1703.03864.pdf] to directly
train the weights of the network.

We have data that suggest that FAI techniques beat ES in many kinds of low dimensional global
optimization problems. GAS [https://arxiv.org/pdf/1705.08691.pdf] Shows how an early algorithm
derived from FAI that incorporates a tabu search-like strategy, and a multi-scale exploration
mechanism that outperforms alternative metaheuristic techniques. We tested GAS in optimizing
Lennard-Jones energy landscapes up to 80 degrees of freedom, but we couldn’t manage to benchmark
the same problem against other techniques, because we couldn’t get any of them to work on those
problems.

We believe that trying ES with a novelty search-inspired algorithm, derived from first principles
of FAI, could prove useful in training large networks. For example, deriving an algorithm with the
following properties is pretty straightforward:


	We can balance the spatial distribution to match the reward distribution of the action space using
the virtual reward. If done right, this should weight the gradients to favor a more controlled
evolution process.


	It is possible to add a more sophisticated tabu-like memory like we did in
GAS [https://arxiv.org/pdf/1705.08691.pdf], in a similar way that novelty search does. The
diversity with respect to previously explored solutions could bebalanced in the virtual reward
formula, at the same time we balance the exploration/exploitation information of the walkers.


	We could perturbate the weights either using some standard technique like mirrored sampling, or
any other technique that proves to work in this kind of problem.


	In order to integrate the weights it would be possible to use any trick such as applying ranks,
or using different standard optimizers the same way ES does. FAI allows to be combined with
virtually any mathematical technique, but it is also possible to use an integration technique
derived from FAI, depending on the specific behaviour desired for the walkers.




FAI-derived tools are also really simple to escalate, and can greatly benefit from an increase in
computational resources.




7. Other tasks solved

Besides Atari games, we have also used our theory to solve different continuous control environments involving task such as:


	Collecting rocks with a spaceship (Video [https://www.youtube.com/watch?v=HLbThk624jI] and
blog post [http://entropicai.blogspot.com.es/2016/04/understanding-mining-example.html]):
This agent can catch rocks using a hook that behaves like an elastic band. We are capable of
sampling low  probability trajectories in such chaotic space state.


	Multi agent environments: It is aso possible to control multi agent environments, like
Maintaining a formation [https://www.youtube.com/watch?v=J9kW1lhT06A],
cooperating to achieve a shared goal [https://www.youtube.com/watch?v=DsvSH3cNhnE],
or fighting [http://entropicai.blogspot.com.es/2015/05/tonight-four-of-my-new-fractal-minded.html] against each other.
A nice property of our methods is that their computational cost scales near linearly with the number of agents.


	Stochastic simulations: It can even handle uncertainty in a continuous domain [http://entropicai.blogspot.com.es/2015/06/passing-asteroids-test.html?m=0].
You can also check this on Atari games by setting the clone_seeds parameter of the agent to False.


	Multi objective and multi agent path finding: This technique can also be applied to path finding problems. Video 1 [https://www.youtube.com/watch?v=AoiGseO7g1I],
Video 2 [https://www.youtube.com/watch?v=R61FRUf-F6M], Blog Post [http://entropicai.blogspot.com.es/search/label/Path%20finding].


	General optimization: Here you can find a visual representation [http://entropicai.blogspot.com.es/2016/02/serious-fractal-optimizing.html?m=0]
of how the GAS algorithm explores the state space.
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